DESIGNING AN ADVANCED AUTONOMOUS UNDERWATER VEHICLE: INTEGRATING HYDRODYNAMIC EFFICIENCY, PROPULSION INNOVATION, AND STRUCTURAL RESILIENCE

Ali Jebelli,∗ Nafiseh Lotfi,∗∗ and Mustapha C. E. Yagoub∗∗∗

References

  1. [1] W. Zhang, N. Wang, S. Wei, J. Zeng, and W. Wu, Consensuscontrol of multiple autonomous underwater vehicles underdelays aiming for dynamic target hunting tasks, InternationalJournal of Robotics and Automation, 38(1), 2023, 42–49,http://dx.doi.org/10.2316/J.2023.206-0751.
  2. [2] A. Jebelli, H. Chaoui, A. Mahabadi, and B.S. Dhillon,Tracking and mapping system for an underwater vehiclein real position using sonar system, International Jour-nal of Robotics and Automation, 37(1), 2022, 124–134,https://doi.org/10.2316/J.2022.206-0524.
  3. [3] J.P. Panda, A. Mitra, and H. V. Warrior, A review on the hydro-dynamic characteristics of autonomous underwater vehicles,Proceedings of the Institution of Mechanical Engineers, Part-M:Journal of Engineering for the Maritime Environment, 235(1),2021, 15–29, https://doi.org/10.1177/1475090220936896.
  4. [4] M. Salari, and A. Rava, Numerical investigation of hydro-dynamic flow over an AUV moving in the water-surfacevicinity considering the laminar-turbulent transition, Journalof Marine Science and Application, 16(3), 2017, 298–304 ,https://doi.org/10.1007/s11804-017-1422-x.
  5. [5] R. Sakthivel, S. Vengadesan, and S. Bhattacharya, Applicationof non-linear k-e turbulence model in flow simulation overunderwater axisymmetric hull at higher angle of attack, Journalof Naval Architecture and Marine Engineering, 8(2), 2011,149–163 https://doi.org/10.3329/jname.v8i2.6984.
  6. [6] Y. Liu, Z. Yu, L. Zhang, T. Liu, D. Feng, and J.Zhang, A fine drag coefficient model for hull shape ofunderwater vehicles, Ocean Engineering, 236, 2021, 109361,https://doi.org/10.1016/j.oceaneng.2021.109361.
  7. [7] M. Saghafi and R. Lavimi, Optimal design of nose and tail ofan autonomous underwater vehicle hull to reduce drag forceusing numerical simulation, Proceedings of the Institution ofMechanical Engineers, Part-M: Journal of Engineering for theMaritime Environment, 234(1), 2020, 76–88, https://doi.org/10.1177/1475090219863191.
  8. [8] B. Allotta, L. Pugi, F. Bartolini, A. Ridolfi, R. Costanzi, N.Monni, and J. Gelli, Preliminary design and fast prototypingof an autonomous underwater vehicle propulsion system,Proceedings of the Institution of Mechanical Engineers, Part-M:Journal of Engineering for the Maritime Environment, 229(3),2015, 248–272, https://doi.org/10.1177/1475090213514040.
  9. [9] W. Luo, X. Guo, J. Dai, and T. Rao, Hull optimization of anunderwater vehicle based on dynamic surrogate model, OceanEngineering, 230, 2021, 109050, https://doi.org/10.1016/j.oceaneng.2021.109050.
  10. [10] T. Allston, J. Munroe, R. Lewis, D. Mouland, J. Xu, and D.Walker, Predicting the wake behind a large AUV hydrofoil,Methods in Oceanography, 10, 2014, 166–177, https://doi.org/10.1016/j.mio.2014.07.004.
  11. [11] C.-W. Chen, Y. Jiang, H.-C. Huang, D.-X. Ji, G.-Q.Sun, Z. Yu, and Y. Chen, Computational fluid dynamicsstudy of the motion stability of an autonomous under-water helicopter, Ocean Engineering, 143, 2017, 227–239,https://doi.org/10.1016/j.oceaneng.2017.07.020.12
  12. [12] G. da Silva Costa, A. Ruiz, M.A. Reis, A.T. da Cunha Lima,M.P. de Almeida, and I.C. da Cunha Lima, Numerical analysisof stability and manoeuvrability of Autonomous UnderwaterVehicles (AUV) with fishtail shape, Ocean Engineering,144, 2017, 320–326, https://doi.org/10.1016/j.oceaneng.2017.08.030.
  13. [13] A. Meschini, A. Ridolfi, J. Gelli, M. Pagliai, and A. Rindi,Pressure hull design methods for unmanned underwatervehicles, Journal of Marine Science and Engineering, 7(11),2019, 382, https://doi.org/10.3390/jmse7110382.
  14. [14] Z. Liu, B. Shi, Z. Cao, Y. Zhang, and W. Wang,Study on structural behavior of reinforced concrete framestructures with shear wall, Journal of Physics: ConferenceSeries, 2133(1), 2019, 12022, https://doi.org/10.1088/1742-6596/2133/1/012022.
  15. [15] D.C. Hern´andez-Jaramillo and R.E. V´asquez, Design of a bioin-spired underwater glider for oceanographic research, Biomimet-ics, 8(1), 2023, 80, https://doi.org/10.3390/biomimetics8010080.
  16. [16] R.A.C. Santos, G.L. de Menezes, C.L. de Oliveira, and G.D.M.Lima, 3D printing and finite element analysis of nylon propellerfor autonomous underwater vehicle, Materials Research, 24,2021, e20200236, https://doi.org/10.1590/1980-5373-mr-2020-0236.
  17. [17] D.H. Vardhan, A. Ramesh, and B.C.M. Reddy, A reviewon materials used for marine propellers, Materials Today:Proceedings, 18(7), (2019). , 4482–4490, https://doi.org/10.1016/j.matpr.2019.07.418.
  18. [18] H.F. Gasparoto, O. Chocron, M. Benbouzid, and P.S. Meirelles,Advances in reconfigurable vectorial thrusters for adaptiveunderwater robots, Journal of Marine Science and Engineering,9(2), 2021, 170, https://doi.org/10.3390/jmse9020170.
  19. [19] S. Darmawan, K. Raynaldo, and A. Halim, Investigationof thruster design to obtain the optimum thrust for ROV(Remotely Operated Vehicle) using CFD, Evergreen, 9(1),2022, 115–125, https://doi.org/10.5109/4774224.
  20. [20] A. Bahatmaka, D.-J. Kim, and D. Chrismianto, Optimizationof ducted propeller design for the ROV (Remotely OperatedVehicle) using CFD, Advances in Technology Innovation, 2,2016, 77–84, https://doi.org/10.5281/zenodo.1292406.
  21. [21] C. Chen and Y. Jiang, Computational fluid dynamics studyof Magnus force on an axis-symmetric, disk-type AUVwith symmetric propulsion, Symmetry, 11(3), 2019, 397,https://doi.org/10.3390/sym11030397.
  22. [22] A. Jebelli, A. Mahabadi, M.S. Zare, and R. Ahmad,Numerical simulations of lateral input effect in anopen channel to reduce disturbances in the mainstreamchannel using CFD, Water-Energy Nexus, 5, 2022, 39–49,https://doi.org/10.1016/j.wen.2022.11.001.
  23. [23] A. Jebelli, M.S. Zare, N. Lotfi, and M. Yagoub,Numerical simulation and optimization of a circularopen channel for fish farming using Computational FluidDynamics (CFD), Water-Energy Nexus, 6, 2023, 96–111,https://doi.org/10.1016/j.wen.2023.08.001.
  24. [24] P.I. Muiruri, O.S. Motsamai, and R. Ndeda, A comparativestudy of RANS-based turbulence models for an upscalewind turbine blade, SN Applied Sciences, 1(3), 2019, 237,https://doi.org/10.1007/s42452-019-0254-5.
  25. [25] F.R. Menter, Two-equation eddy-viscosity turbulence modelsfor engineering applications, AIAA Journal, 32(8), 1994,1598–1605, https://doi.org/10.2514/3.12149.
  26. [26] P.A.S.F. Silva, P. Tsoutsanis, and A.F. Antoniadis,Simple multiple reference frame for high-order solutionof hovering rotors with and without ground effect,Aerospace Science and Technology, 111, 2021, 106518,https://doi.org/10.1016/j.ast.2021.106518.
  27. [27] B. Cantor, Hooke’s Law. (Oxford: Oxford UniversityPress eBooks, 2020), 207–225, https://doi.org/10.1093/oso/9780198851875.003.0010.
  28. [28] A. Jebelli, A. Mahabadi, and M. Yagoub, Increasing theoperating depth of an autonomous underwater vehicleusing an intelligent magnetic field, International Jour-nal of Robotics and Automation, 10(3), 2021, 207–223,https://doi.org/10.11591/ijra.v10i3.pp207-223.
  29. [29] A. Jebelli, A. Mahabadi, A. Nayak, and R. Ahmad, Increasingthe operating depth of a Teflon underwater vehicle usinga magnetic field, Ocean Engineering, 250, 2022, 111078,https://doi.org/10.1016/j.oceaneng.2022.111078.
  30. [30] Data Sheet for Nylon 6, MatWeb.com, (Nov. 2024),https://www.matweb.com/search/DataSheet.aspx?MatGUID=482765fad3b443169ec28fb6f9606660
  31. [31] Data Sheet for PMMA, MatWeb.com, (Nov. 2024), https://www.matweb.com/search/datasheet.aspx?matguid=e0ba830d1da24d3aa2bd8aa2a6c79f2a
  32. [32] Data Sheet for POM-C, MatWeb.com, (Nov. 2024), https://www.matweb.com/search/datasheet print.aspx?matguid=4d14eac958e5401a8fd152e1261b6843
  33. [33] Data Sheet for HDPE, MatWeb.com, (Nov. 2024), https://www.matweb.com/search/DataSheet.aspx?MatGUID=9d548b79da2645798726378402570720
  34. [34] T200 Thruster, BlueRobotics.com, (Nov. 2024), https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/

Important Links:

Go Back