ANGLE ERROR OBSERVER BASED-ADAPTIVE TRACKING CONTROL OF WHEELED MOBILE ROBOT WITH UNCERTAINTIES

Mingyue Cui,∗,∗∗ Hualong Jiang,∗ Yangbing Zheng,∗,∗∗ Yiyuan Cheng,∗,∗∗ and Wei Liu,∗,∗∗

References

  1. [1] C. Lv, X. Fan, and M. Sun, A fusion algorithm for pathplanning of mobile robots in environments with dynamicsobstacles, International Journal of Robotics and Automation,39(2), 2024, 94–105.
  2. [2] T. Khayyam, S.G. Ponnambalam, M.N. Janardhanan, andI.E. Nielsen, Behaviour-defined navigation framework fordynamical obstacle avoidance in multi-robot systems consistingof holonomic robots, International Journal of Robotics andAutomation, 39(5), 2024, 379–390.
  3. [3] R. Wang, Z. Zhu, X. Zhang, Y. Fang, and B. Li, Visual servoingtrajectory tracking and depth identification for mobile robotswith velocity saturation constraints, IEEE Transactions onIndustrial Electronics, 71(6), 2024, 5950–5959.
  4. [4] B. Qin, H. Yan, L. Zeng, S. X. Yang, and M. Wang, Enhancedextended state observer based output-feedback tracking controlof wheeled mobile robot with disturbance, InternationalJournal of Robotics and Automation, 39(5), 2024, 422–430.
  5. [5] H. Zhang, J. Sun, and Z. Wang, Distributed control ofnonholonomic robots without global position measurementssubject to unknown slippage constraints, IEEE/CAA Journalof Automatica Sinica, 9(2), 2022, 354–364.
  6. [6] M. Cui, H. Liu, X. Wang, and W. Liu, Adaptive control forsimultaneous tracking and stabilization of wheeled mobile robotwith uncertainties, Journal of Intelligent & Robotic Systems,108(3), 2023, 46.
  7. [7] E. Kayacan, Closed-loop error learning control for uncertainnonlinear systems with experimental validation on a mobilerobot, IEEE/ASME Transactions on Mechatronics, 24(5),2019, 2397–2405.
  8. [8] H. Wu, S. Wang, Y. Xie, H. Li, S. Zheng, and L. Jiang,Adaptive abrupt disturbance rejection tracking control forwheeled mobile robots, IEEE robotics and automation letters,9(9), 2024, 7787–7794.
  9. [9] B. S. Park, S.J, Yoo, J.B. Park, and Y.H. Choi, Adaptiveneural sliding mode control of nonholonomic wheeled mobilerobots with model uncertainty, IEEE Transactions on ControlSystems Technology, 17 (1), 2009, 207–214.
  10. [10] L. Li, J. Qiang, Y. Xia, and W. Cao, Adaptive dual closed-looptrajectory tracking control for a wheeled mobile robot on roughground, Nonlinear Dynamics, 113, 2025, 2411–2425.
  11. [11] Z. Chen, Y. Liu, W. He, H. Qiao, and H. Ji, Adaptive-neural-network-based trajectory tracking control for a nonholonomicwheeled mobile robot with velocity constraints, IEEETransactions on Industrial Electronics, 68(6), 2021, 5057–5067.
  12. [12] Z. Hou, A. Zou, L. Cheng, and M. Tan, Adaptive control of anelectrically driven nonholonomic mobile robot via backsteppingand fuzzy approach, IEEE Transaction on Control SystemsTechnology, 17(4), 2009, 803–815.
  13. [13] J. Huang, C. Wen, W. Wang, and Z. Jian, Adaptive stabilizationand tracking control of a nonholonomic mobile robot withinput saturation and disturbance, Systems & Control Letters,62(3), 2013, 234–241.
  14. [14] Z. Miao and Y. Wang, Adaptive control for simultaneousstabilization and tracking of unicycle mobile robots, AsianJournal of Control, 17(6), 2015, 2277–2288.
  15. [15] T. Mai and H. Tran, An adaptive robust backsteppingimproved control scheme for mobile manipulators robot, ISATransactions, 137, 2023, 446–456.
  16. [16] N.T. Binh, N.A. Tung, D.P. Nam, and N.H. Quang, Anadaptive backstepping trajectory tracking control of a tractortrailer wheeled mobile robot, International Journal of Control,Automation and Systems, 17, 2019, 465–473.
  17. [17] X. Wu, P. Jin, T. Zou, Z. Qi, H. Xiao, and P. Lou, Backsteppingtrajectory tracking based on fuzzy sliding mode control fordifferential mobile robots, Journal of Intelligent & RoboticSystems, 96, 2019, 109–121.11
  18. [18] A.T. Nguyen, J. Rath, and T.M. Guerra, R. Palhares,and H. Zhang, Robust set-invariance based fuzzy outputtracking control for vehicle autonomous driving under uncertainlateral forces and steering constraints, IEEE Transactions onIntelligent Transportation Systems, 22(9), 2021, 5849–5860.
  19. [19] R.J. Wai and C.M.Liu, Design of dynamic petri recurrent fuzzyneural network and its application to path-tracking control ofnonholonomic mobile robot, IEEE Transactions on IndustrialElectronics, 56(7), 2009, 2667–2683.
  20. [20] M. Qian, C. Sun, B. Jiang, R. Wang, and J. Shi, Event-basedadaptive fault tolerant control and collision avoidance of wheelmobile robots with communication limits, IEEE Transactionson Industrial Electronics, 71, 2024, 14832–14841.
  21. [21] T. Sun, H. Pei, Y. Pan, and C. Zhang, Robust adaptive neuralnetwork control for environmental boundary tracking by mobilerobots, International Journal of Robust & Nonlinear Control,23(2), 2013, 123–136.
  22. [22] C.L. Hwang, L.J. Chang, and Y.S. Yu, Network-based fuzzydecentralized sliding-mode control for car-like mobile robots,IEEE Transactions on Industrial Electronics, 54(1), 2007,574–585.
  23. [23] H. Kim and B.K. Kim, Online minimum-energy trajectoryplanning and control on a straight-line path for three-wheeled omnidirectional mobile robots, IEEE Transactions onIndustrial Electronics, 61(9), 2014, 4771–4779.
  24. [24] Y. Li, C. Tang, S. Peeta, and Y. Wang, Integral-sliding-mode braking control for connected vehicle platoon: Theoryand application, IEEE Transactions on Industrial Electronics,66(6), 2019, 4618–4628.
  25. [25] D. Huang, J. Zhai, W. Ai, and S. Fei, Disturbance observer-based robust control for trajectory tracking of wheeled mobilerobots, Neurocomputing, 198(19), 2016, 74–79.
  26. [26] J. Peng, H. Xiao, and G. Lai, Nonlinear disturbanceobserver incorporated model predictive strategy for wheeledmobile robot’s trajectory tracking control, InternationalJournal of Control, Automation and Systems, 22(7), 2024,2251–2262.
  27. [27] J.A. Rodr´ıguez-Arellano, R. Miranda-Colorado, L.T. Aguilar,and M.A. Negrete-Villanueva, Trajectory tracking nonlinearH∞ controller for wheeled mobile robots with disturbancesobserver, ISA Transactions, 142, 2023, 372–385.
  28. [28] J. Taheri-Kalani and N.A. Zarei, An adaptive technique fortrajectory tracking control of a wheeled mobile robot withoutvelocity measurements, Automatic Control & ComputerSciences, 50(6), 2016, 441–452.
  29. [29] S. Shi, X. Yu, and S. Khoo, Robust finite-time tracking controlof nonholonomic mobile robots without velocity measurements,International Journal of Control, 89(2), 2016, 411–423.
  30. [30] K. Shojaei, Saturated output feedback control of uncertainnonholonomic wheeled mobile robots, Robotica, 33(1), 2014,1–19.
  31. [31] B. Ma, Observer-based path following control of wheeled mobilerobots, Control Theory & Applications, 24(5), 2007, 756–760.
  32. [32] L. Xia, and B. Ma, Output feedback trajectory tracking controlof wheeled mobile robots with position measurements, ControlTheory & Applications, 33(6), 2016, 763–771.
  33. [33] M.M. Rayguru, R.E. Mohan, R. Parween, L. Yi, A.V. Le,and S. Roy, An output feedback based robust saturatedcontroller design for pavement sweeping self-reconfigurablerobot, IEEE/ASME Transactions on Mechatronics, 26(3),2021, 1236–1247.
  34. [34] C. Ren, Y. Ding, and S. Ma, A structure-improvedextended state observer based control with application to anomnidirectional mobile robot, ISA Transaction, 101, 2020,335–345.
  35. [35] C. Ren, X. Li, X. Yang, and S. Ma, Extended state observerbased sliding mode control of an omnidirectional mobile robotwith friction compensation, IEEE Transactions on IndustrialElectronics, 66(12), 2019, 9480–9489.
  36. [36] M. Cui, R. Huang, H. Liu, and D. Sun, Adaptive trackingcontrol of wheeled mobile robots with unknown longitudinaland lateral slipping parameters, Nonlinear Dynamics, 78(3),2014, 1811–1826.
  37. [37] S.P.M. Noijen, P.F. Lambrechts, and H. Nijmeijer, Anobserver-controller combination for a unicycle mobile robot,International Journal of Control, 78(2), 2005, 81–87.
  38. [38] M. Cui, H. Liu, W. Liu, and X. Lv, Orientation-errorobserver-based tracking control of nonholonomic mobile robots,Nonlinear Dynamics, 90(2), 2017, 935–949.
  39. [39] B.S. Park, J.B. Park, and Y.H. Choi, Adaptive observer-basedtrajectory tracking control of nonholonomic mobile robots,International Journal of Control, Automation and Systems,9(3), 2011, 534–541.
  40. [40] J.H. Lee, C. Lin, H. Lim, and J.M. Lee, Sliding mode control fortrajectory tracking of mobile robot in the RFID sensor space,International Journal of Control, Automation and Systems,7(3), 2009, 429–435.
  41. [41] R. Gonzalez, M. Fiacchini, T. Alamo, J.L. Guzman, and F.Rodriguez, Adaptive control for a mobile robot under slipconditions using an LMI-based approach, European Journal ofControl, 16(2), 2010, 144–155.
  42. [42] J. Slotine and W. Li, Applied Nonlinear Control. (New Jersey,NJ: Prentice- Hall, 1991).
  43. [43] H.K. Khalil, Nonlinear Systems, 3rd. (New Jewsey, NJ: PrenticeHall, 2002).

Important Links:

Go Back